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ABSTRACT
Most existing deep learning models are trained based on the closed-
world assumption, where the test data is assumed to be drawn
i.i.d. from the same distribution as the training data, known as in-
distribution (ID). However, when models are deployed in an open-
world scenario, test samples can be out-of-distribution (OOD) and
therefore should be handled with caution. To detect such OOD sam-
ples drawn from unknown distribution, OOD detection has received
increasing attention lately. However, current endeavors mostly fo-
cus on grid-structured data and its application for graph-structured
data remains under-explored. Considering the fact that data labeling
on graphs is commonly time-expensive and labor-intensive, in this
work we study the problem of unsupervised graph OOD detection,
aiming at detecting OOD graphs solely based on unlabeled ID data.
To achieve this goal, we develop a new graph contrastive learning
framework GOOD-D for detecting OOD graphs without using any
ground-truth labels. By performing hierarchical contrastive learn-
ing on the augmented graphs generated by our perturbation-free
graph data augmentation method, GOOD-D is able to capture the
latent ID patterns and accurately detect OOD graphs based on the
semantic inconsistency in different granularities (i.e., node-level,
graph-level, and group-level). As a pioneeringwork in unsupervised
graph-level OOD detection, we build a comprehensive benchmark
to compare our proposed approach with different state-of-the-art
methods. The experiment results demonstrate the superiority of
our approach over different methods on various datasets.
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Figure 1: Toy examples of (a) ID graphs (𝐺𝑎 - 𝐺𝑑 ) and OOD
graphs (𝐺𝑥 - 𝐺𝑧 ); and (b) perturbation-based augmentations
(e.g., feature modification (FM), edge modification (EM), and
graph diffusion (GD)) introducing OOD samples.
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1 INTRODUCTION
Nowadays, graphs are ubiquitous in various real-world scenarios,
including but not limited to social network analysis [13], molec-
ular chemistry inference [47], recommendation [53], and robot-
ics [21]. Expanding deep learning techniques to graph-structured
data, graph neural networks (GNNs) have attracted significant re-
search interests in recent years [18, 45, 50]. Based on the message
passing scheme, GNNs encode attributive and structural informa-
tion by feature transformation and message propagation to learn
high-level node/graph embeddings, which can be further used for
various downstream tasks [13]. Attributed to their powerful rep-
resentation ability and flexibility, GNNs have shown remarkable
performance in many graph analytic tasks, such as graph classifica-
tion [50], link prediction [56], and node classification [18].

Despite the prevalence of GNNs for deep graph learning, sim-
ilar to other modern machine learning models, GNN-based deep
graph learning models deployed in the open world often strug-
gle with out-of-distribution (OOD) input samples from a different
distribution that the model has not been exposed to during train-
ing. Ideally, a reliable machine learning system should not only
accurately classify known in-distribution (ID) samples, but also
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be aware of “unknown” OOD inputs during the inference time.
This gives rise to the importance of OOD detection, which deter-
mines whether an input is ID or OOD and enables the model to
take precautions [22, 36, 62]. Recently OOD detection has received
increasing attention in images [16, 37] or text [62] domain, while it
is substantially less investigated on graph-structured data. Though
few recent works [39, 58] in semi-supervised node classification
could be used to detect OOD samples, their effectiveness is only
confined to node-level detection and largely relies on labeled ID
data. It is infeasible to directly apply those methods to detecting
OOD graphs, especially when considering the scarcity of class la-
bels and OOD samples. Hence, a natural research question to ask
is "Can we effectively detect OOD graphs solely based on unlabeled
in-distribution data?"

Motivated by the recent progress of self-supervised learning for
unsupervised graph representation learning, in this paper, we aim to
answer the question by exploring the potential of graph contrastive
learning (GCL) for detecting OOD graphs. However, it remains
a non-trivial research task, mainly due to the following two rea-
sons: (1) prevailing graph self-supervised learning, especially GCL
methods commonly adopt arbitrary augmentations (e.g., feature
modification, node/edge dropping, and graph diffusion) to obtain
augmented views of the input graph [8, 14, 63]. Such augmentations,
as shown in Fig. 1(b), may unexpectedly perturb both structural and
semantic patterns of the graph, which in turn introduces undesired
OOD samples [12]. As an example in molecular graphs, perturbing
the connection of aspirin might introduce a new molecule with
totally different properties, such as five-membered lactone. Hence,
proposing a principled perturbation-free graph augmentation ap-
proach is a necessity of learning expressive graph representations
and further detecting OOD samples; (2) Existing GCL methods pre-
dominantly focus on instance-level contrast to achieve node/graph-
wise discrimination among all the inputs [33, 52, 63], which is not
well aligned with the objective of OOD detection. As illustrated in
Fig. 1(a), in real-world scenarios, OOD graphs may violate the latent
patterns of ID graphs in different granularities, such as node-level
variation (e.g.𝐺𝑥 ), graph-level redundant connection (e.g.𝐺𝑦 ), and
cluster-deviated samples (e.g. 𝐺𝑧 ). In order to accurately detect di-
verse OOD graphs during inference, the GCL algorithm is supposed
to not only learn expressive node/graph representations based on
the augmented graphs, but also consolidate the semantic manifolds
(i.e., intra-cluster compactness and inter-cluster separability) of the
ID data. Nonetheless, such an unsupervised GCL algorithm as well
as the scoring function for detecting OOD graphs have yet to be
proposed and investigated.

In this paper, we make the first attempt to solve the problem of
unsupervised graph-level OOD detection. To counter the aforemen-
tioned challenges, we propose a novel Graph Out-Of-Distribution
Detection method, namely GOOD-D. Our theme is to capture the
latent patterns shared by ID graphs via hierarchical contrastive
learning with perturbation-free data augmentation. To address the
first challenge, we design a perturbation-free data augmentation
method to enable graph self-supervised learning without introduc-
ing detrimental perturbations. Specifically, we generate a structure
view of the input graph by rewriting the features of each node with
the pre-computed high-level structural encodings. By maximizing

the agreement between the representations learned from the struc-
ture view and the original graph (i.e., feature view), the model will
learn to extract consistent representations from the different views
of an ID graph. To address the second challenge, we propose a hi-
erarchical graph contrastive learning algorithm, which not only
enables node and graph-level contrasts to learn expressive node and
graph representations, but also incorporates group-level contrast
to enhance the semantic manifold of the ID data. Thus for each test
graph sample, its node-level and graph-level disagreement between
two different views as well as the group-level disconfirmation to
the ID data semantic manifold can be leveraged as an indicative
OOD scoring function. To automatically control the contribution
of the hierarchical contrastive learning at each granularity, we fur-
ther equip the hierarchical contrastive learning component with an
adaptive learning loss. Finally, we construct a comprehensive bench-
mark for graph-level OOD detection based on real-world datasets
from diverse domains to evaluate the effectiveness of our proposed
framework against state-of-the-art methods. Based upon it, we con-
duct extensive experiments to demonstrate the superiority of our
approach. In summary, our major contributions are three-fold:
• Problem:We formally formulate the graph-level OOD detection
problem and build a set of benchmarking datasets for evaluation,
which can shed good light on the following research in this field.

• Algorithm: We propose a self-supervised graph OOD detection
framework, i.e., GOOD-D, which can learn expressive ID dis-
tribution and measure the OOD scores for different inputs by
performing hierarchical contrastive learning with perturbation-
free graph data augmentation.

• Evaluations:We conduct extensive experiments on a range of
benchmarks to demonstrate the superior performance of GOOD-
D over the state-of-the-art methods.

2 RELATEDWORK
Graph Neural Networks. Graph neural networks (GNNs) have
attracted increasing research attention due to their capability to
model graph-structured data [13, 18, 45, 48, 50]. A branch of meth-
ods termed spectral-based GNNs defines graph convolution based
on spectral graph theory [4, 18]. For example, GCN [18] performs
convolutional operation via the first-order approximation of Cheby-
shev polynomial filter [4]. SGC [48] further simplifies the graph
convolution to a linear operation. Another family of models termed
spatial-basedGNNs performs graph convolution by aggregating and
transforming local information [13, 45, 50]. For instance, GAT [45]
introduces the attention mechanism to allocate weights for neigh-
bors in local aggregation. GIN [50] boosts the expressive power of
GNNs by utilizing an injective summation operation to aggregate
neighboring information. Some recent works try to improve from
different perspectives, including scalability [54], trustworthy [55],
and architecture design [59].
Out-of-distributionDetection. Out-of-distribution (OOD) detec-
tion aims to discriminate the test samples that are far from the distri-
bution of training samples. According to the availability of ground-
truth labels during training phase, we can divide OOD detection
methods into two types, i.e., supervised methods and unsupervised
methods [37, 49]. Supervised methods [16, 22] leverage fine-grained
labels to model the distribution of in-distribution (ID) data detect
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the OOD samples in the learned feature space. Unsupervised meth-
ods capture the distribution of ID data via reconstruction-based
models [36], one-class classification [35], probabilistic models [34],
and self-supervised learning [37, 62]. Considering the expensive
cost of label annotation [37], this paper investigates unsupervised
OOD detection, which is a more practical but also more challenging
scenario compared to the supervised counterpart.

While extensive OOD detection methods are developed for vi-
sion [22, 37, 49] and language [62] data, how to identify OOD
samples on graph-structured data is still under-explored. There is a
line of studies [11, 19] aim to generalize GNNs to OOD data under
distribution shifts. However, these methods focus on improving
the generalization ability of GNNs on certain downstream tasks
(e.g., node classification) rather than identifying the OOD samples.
Another related research topic is graph anomaly detection, which
can be regarded as a subfield of OOD detection [5, 6, 26, 57]. Graph
anomaly detection focuses on detecting malicious data from real-
world systems (e.g., fraud or spam data) [28] or the tail samples
belonging to minority categories [29]. By contrast, graph OOD de-
tection is a more general and challenging task, since malicious/tail
samples can be regarded as the subtypes of OOD data [37]. In this
paper, we consider several anomaly detection methods [29, 57] for
comparison, and also verify the effectiveness our method on both
OOD detection and anomaly detection tasks.
Graph Contrastive Learning. As an important branch of graph
self-supervised learning [24, 25], graph contrastive learning (GCL)
has shown to be an effective technique for unsupervised graph
representation learning [7, 14, 33, 40, 44, 52, 60, 61, 63]. A general
pipeline of GCL methods is to generate multiple graph views via
data augmentation and then maximize the cross-view mutual agree-
ment between samples with similar semantics [7, 14, 52, 61, 63].
Apart from representation learning, GCL also benefits various
graph-related applications, such as recommendation systems [53],
drug interaction learning [47], and graph structure learning [27].
In this paper, we apply GCL to graph-level OOD detection tasks by
innovatively equipping GCL with structure-based perturbation-free
augmentation and hierarchical contrast.

3 PROBLEM DEFINITION
Before formulating the research problem, we first provide some
necessary notations. Let 𝐺 = (V, E,X) represent a graph, where
V is the set of nodes and E is the set of edges. The node features
are represented by the feature matrix X ∈ R𝑛×𝑑𝑓 , where 𝑛 = |V| is
the number of nodes and 𝑑𝑓 is the feature dimension. The structure
information can also be described by an adjacencymatrixA ∈ R𝑛×𝑛 ,
so a graph can be alternatively represented by 𝐺 = (A,X).

In this paper, we focus on the unsupervised graph-level out-of-
distribution (OOD) detection problem, which can be formulated as:

Definition 3.1 (Unsupervised graph-level OOD detection). We as-
sume that we have an ID dataset D𝑖𝑛 = {𝐺𝑖𝑛1 , · · · 𝐺

𝑖𝑛
𝑁1

} where
graphs are sampled from a certain distribution P𝑖𝑛 and an OOD
dataset D𝑜𝑢𝑡 = {𝐺𝑜𝑢𝑡1 , · · · 𝐺𝑜𝑢𝑡

𝑁2
} where graphs are sampled from

an OOD distribution P𝑜𝑢𝑡 . Given a graph𝐺 , the goal is to correctly
identify its source distribution (i.e., P𝑖𝑛 or P𝑜𝑢𝑡 ). Concretely, a scor-
ing function 𝑓 (·) is learned to generate an OOD detection score

𝑠 = 𝑓 (𝐺) for an input graph 𝐺 , where a larger 𝑠 indicates a higher
probability that𝐺 is from P𝑜𝑢𝑡 . In practice, the scoring function (i.e.
learning model) is trained only on ID dataset D𝑖𝑛

𝑡𝑟𝑎𝑖𝑛
⊂ D𝑖𝑛 and is

evaluated on a test set containingD𝑖𝑛
𝑡𝑒𝑠𝑡 ⊂ D𝑖𝑛 (D𝑖𝑛

𝑡𝑒𝑠𝑡∩D𝑖𝑛
𝑡𝑟𝑎𝑖𝑛

= ∅)
and D𝑜𝑢𝑡

𝑡𝑒𝑠𝑡 ⊂ D𝑜𝑢𝑡 .

Note that graph data from P𝑖𝑛 and P𝑜𝑢𝑡 may belong to one
or more categories. Since we investigate the unsupervised OOD
problem, all the category-based labels are not considered.

4 METHODOLOGY
In this section, we introduce our proposed novel Graph Out-Of-
Distribution Detection (GOOD-D) method. The overall pipeline of
GOOD-D is illustrated in Fig. 2. For each input graph sample, we
first construct feature view and structure view via perturbation-free
graph data augmentation. Then, node embeddings and graph em-
beddings are generated by two GNN-based encoders (F𝑓 and F𝑠 )
and readout functions (R). After that, we conduct hierarchical con-
trastive learning at three different levels, i.e., node level, graph level,
and group level, which maximizes the intra- and inter- graph agree-
ment from multiple perspectives. Finally, the OOD detection score
𝑠 is estimated by an adaptive scoring mechanism that aggregates
the contrastive errors at three levels. In the following sub-sections,
we will introduce the design of GOOD-D in detail.

4.1 Perturbation-free Graph Data
Augmentation

The core of contrastive learning is to maximize the agreement be-
tween samples in two different views [3]. To construct views with
different contents, a general solution is data augmentation, i.e., gen-
erating views with stochastic data transformation [15]. For graph
data, conventional augmentations are mainly based on random data
perturbation, such as edge perturbation [44], node dropping [52],
subgraph extraction [33], graph diffusion [14], and feature modi-
fication [63]. Through maximizing the agreement between a graph
and its augmented view, the GCL model can learn high-quality
representations which are invariant to the perturbations [52].

Although such perturbation invariance is usually conducive to
representation learning, it may not always benefit OOD detection.
The data perturbation on graphs, unexpectedly, can create unde-
sired OOD graphs from original ID graphs, since the ID and OOD
data are sometimes similar and can be transformed to each other
with few modifications [1]. Guided by the objective of contrastive
learning, transformed graphs are enforced to have similar embed-
dings to the original ones, making the model less sensitive to the
difference between ID data and potential OOD data [12]. In this
case, the perturbation-based data augmentations would deteriorate
rather than boost the performance of OOD detection.

To address the above issue, we propose a perturbation-free graph
augmentation strategy specialized in contrastive OOD detection.
Following our new augmentation strategy, two fixed, distinct, and
informative views are constructed from node features and graph
structure perspectives respectively. Specifically, given a graph 𝐺 ,
the feature view is directly built by integrating the node features
and adjacency matrix, i.e.,𝐺 𝑓 = (A,X). To construct the structure
view, we extract node-level structural encodings from the graph
structure and combine themwith adjacency matrix, i.e.,𝐺𝑠 = (A, S),
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Figure 2: An overall illustration of the proposed method GOOD-D.

where S ∈ R𝑛×𝑑𝑠 is a structural encoding matrix and each row s𝑖
indicates a 𝑑𝑠 -dimensional structural encoding vector that incorpo-
rates structure-related properties of the corresponding node 𝑣𝑖 .

To capture universal topological patterns from graph structure,
we jointly consider global and local structural information when
generating structural encodings. To capture global structural in-
formation, we use a random walk diffusion process to build global
structural encodings [10]. Concretely, the encoding s(𝑟𝑤)

𝑖
of node

𝑣𝑖 can be acquired by collecting the diagonal elements of multi-step
random walk-based graph diffusion matrices:

s(𝑟𝑤)
𝑖

=

[
T𝑖𝑖 ,T2𝑖𝑖 , · · · ,T

𝑑
(𝑟𝑤)
𝑠

𝑖𝑖

]
∈ R𝑑

(𝑟𝑤)
𝑠 , (1)

where T = AD−1 is the random walk transition matrix, D is the
diagonal degree matrix such that D𝑖𝑖 =

∑
𝑗 A𝑖 𝑗 , and 𝑑

(𝑟𝑤)
𝑠 is the

dimension of random walk-based global structural encodings. At-
tributed to the characteristic of graph diffusion, the global encodings
represent the unique global role (e.g., central node or tail node) for
each node. To capture local structural information, we define local
structural encodings as the one-hot vector of node degrees [33, 50]:

s(𝑑𝑔)
𝑖𝑘

=

{
1, 𝑘 = D𝑖𝑖 or 𝑘 = 𝑑

(𝑑𝑔)
𝑠 < D𝑖𝑖

0, 𝑘 ≠ D𝑖𝑖
, (2)

where s(𝑑𝑔)
𝑖𝑘

is the 𝑘-th element of degree-based local structure

encoding vector s(𝑑𝑔)
𝑖

for node 𝑣𝑖 and 𝑑
(𝑑𝑔)
𝑠 is the dimension of

degree-based local structural encodings. The degree indicates the
popularity of each node, representing its local role from a neighbor-
ing subgraph. Finally, the structural encoding is acquired by con-
catenating the global and local encodings, i.e., s𝑖 = [s(𝑟𝑤)

𝑖
| |s(𝑑𝑔)
𝑖

].
It is worth noting that our approach is agnostic to the definition
of structural encoding, meaning that diverse structural encodings
(such as distance [51] and Laplacian eigenvectors [9]) can be applied
to GOOD-D. We leave this technical extension for future works.

4.2 Hierarchical Graph Contrastive Learning
Given two graph views 𝐺 𝑓 and 𝐺𝑠 , our proposed hierarchical con-
trastive learning model first extracts node embeddings and graph
embeddings with GNN encoders and readout function, and then con-
ducts hierarchical contrastive learning at three different levels, i.e.,
node level, graph level, and group level.

4.2.1 GNN encoders and readout function. To effectively extract
informative node embeddings from two graph views, we utilize two

parallel GNN encoders (denoted as feature-view encoder F𝑓 and
structure-view encoder F𝑠 ) for representation learning. Different
from most GCL frameworks with weight-shared encoders [33, 52,
63], in GOOD-D, the weights of F𝑓 and F𝑠 are independent to
each other. The reason is that feature view and structure view have
different contents and input feature spaces, and it would be harmful
to encode distinct information with the same set of parameters.

Considering its powerful expression ability, we employ GIN [50]
(𝜖 = 0 for simplicity) as GNN encoders. Taking F𝑓 as an example,
the propagation rule in the 𝑙-th layer of GIN can be expressed as:

h(𝑓 ,𝑙)
𝑖

= MLP(𝑓 ,𝑙) ©­«h(𝑓 ,𝑙−1)𝑖
+

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

h(𝑓 ,𝑙−1)
𝑗

ª®¬ , (3)

where h(𝑓 ,𝑙)
𝑖

is the interval embedding of node 𝑣𝑖 at the 𝑙-th layer
of feature-view encoder F𝑓 , N(𝑣𝑖 ) is the set of first-order neigh-
borhood nodes of node 𝑣𝑖 , and MLP is a two-layer multi-layer
perceptron (MLP) network. We set h(𝑓 ,0)

𝑖
= x𝑖 in F𝑓 and h

(𝑠,0)
𝑖

= s𝑖
in F𝑠 . Given an 𝐿-layer F𝑓 , the final feature-view node embedding
of node 𝑣𝑖 is acquired by concatenating the interval embeddings at
each layer, i.e., h(𝑓 )

𝑖
= [h(𝑓 ,1)

𝑖
| | · · · | |h(𝑓 ,𝐿)

𝑖
], and we can compute

structure-view node embedding h(𝑠)
𝑖

in the same way.
After we get the node embeddings, we use a readout function

to acquire the graph embedding. Following GIN [50], we employ
summation as our readout function, which can be represented by:

h(𝑓 )
𝐺

=
∑︁
𝑣𝑖 ∈V𝐺

h(𝑓 )
𝑖
, h(𝑠)

𝐺
=

∑︁
𝑣𝑖 ∈V𝐺

h(𝑠)
𝑖
, (4)

where h(𝑓 )
𝐺

and h(𝑠)
𝐺

is the feature- and structure- view graph em-
bedding of input graph𝐺 respectively, andV𝐺 is the node set of𝐺 .

4.2.2 Hierarchical Graph Contrastive Learning. Our core idea is
to capture the common patterns of training ID data through con-
trastive learning, such that the OOD data samples that violate these
patterns can be easily exposed during inference. Most existing GCL
methods conduct contrast at a single scale level, e.g., node level [63],
subgraph level [33], and graph level [52]. Some GCL methods lever-
age cross-level contrast [14, 44] to extract inter-scale knowledge
within a graph. Despite their success in representation learning,
these methods may suffer from sub-optimal OOD detection per-
formance due to the following misalignment. Firstly, existing GCL
methods mainly employ instance-level discrimination, ignoring the
intra-cluster compactness and inter-cluster separability of ID data.
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However, such semantic manifolds are significant for OOD detec-
tion, since OOD samples usually appear as cluster-deviated samples
of ID data [19]. Moreover, most GCL methods conduct contrastive
learning at a single scale, while the distinguishable graph patterns
exist at multiple levels due to the diversity of OOD data [29].

To overcome these shortages, we propose a novel hierarchical
contrastive learning method for graph OOD detection. To model
semantic manifolds of ID data, we establish a group-level contrast
mechanism that maximizes the agreement between each sample
and its clustering prototype. To capture the patterns at multiple
levels, we conduct contrastive learning at three different levels, i.e.,
node level, graph level, and group level.

Node-level contrast aims to find the intrinsic patterns from the
perspective of nodes within a single graph. To this end, the learning
objective is to maximize the agreement between the embeddings
belonging to the same node on two views. To conduct contrast in
a specific latent space, we first map h(𝑓 )

𝑖
and h(𝑠)

𝑖
into node-space

embeddings z(𝑓 )
𝑖

and z(𝑠)
𝑖

with MLP-based projection networks.
After that, an InfoNCE-like [3, 63] node-level contrastive loss is
built to maximize the node-level agreement:

L𝑛𝑜𝑑𝑒 =
1
|B|

∑︁
𝐺 𝑗 ∈B

1
2|V𝐺 𝑗

|
∑︁

𝑣𝑖 ∈V𝐺𝑗

[
ℓ (z(𝑓 )

𝑖
, z(𝑠)
𝑖

) + ℓ (z(𝑠)
𝑖
, z(𝑓 )
𝑖

)
]
,

ℓ (z(𝑓 )
𝑖
, z(𝑠)
𝑖

) = − log
𝑒sim(z(𝑓 )

𝑖
,z(𝑠 )
𝑖

)/𝜏∑
𝑣𝑘 ∈V𝐺𝑗

\𝑣𝑖 𝑒
sim(z(𝑓 )

𝑖
,z(𝑠 )
𝑘

)/𝜏
,

(5)
where B is a training batch containing multiple graph samples,
V𝐺 𝑗

is the node set of graph 𝐺 𝑗 , sim(·, ·) is the cosine similarity

function, 𝜏 is the temperature parameter, ℓ (z(𝑠)
𝑖
, z(𝑓 )
𝑖

) is calculated
following ℓ (z(𝑓 )

𝑖
, z(𝑠)
𝑖

).
Graph-level contrast focuses onmodeling the cross-view agree-

ment on each graph sample. Similar to node-level contrast, the
graph embeddings h(𝑓 )

𝐺
and h(𝑠)

𝐺
are transformed into graph-space

embeddings z(𝑓 )
𝐺

and z(𝑠)
𝐺

with MLP-based projection networks.
Then, we construct a graph-level contrastive loss for mutual agree-
ment maximization:

L𝑔𝑟𝑎𝑝ℎ =
1

2|B|
∑︁
𝐺𝑖 ∈B

[
ℓ (z(𝑓 )

𝐺𝑖
, z(𝑠)
𝐺𝑖

) + ℓ (z(𝑠)
𝐺𝑖
, z(𝑓 )
𝐺𝑖

)
]
,

ℓ (z(𝑓 )
𝐺𝑖
, z(𝑠)
𝐺𝑖

) = − log
𝑒
sim(z(𝑓 )

𝐺𝑖
,z(𝑠 )
𝐺𝑖

)/𝜏∑
𝐺 𝑗 ∈B\𝐺𝑖

𝑒
sim(z(𝑓 )

𝐺𝑖
,z(𝑠 )
𝐺𝑗

)/𝜏
,

(6)

where ℓ (z(𝑠)
𝐺𝑖
, z(𝑓 )
𝐺𝑖

) is calculated following ℓ (z(𝑓 )
𝐺𝑖
, z(𝑠)
𝐺𝑖

), and other
notations are similar to Eq. (5).

Group-level contrast targets to capture the patterns shared by
a group of graph samples. To this end, we first perform clustering
algorithm to find prototypes [20, 41, 42] (cluster centroids) and use
prototypical contrastive learning loss to maximize the agreement
between each sample and its corresponding prototype. Specifically,
for each graph𝐺𝑖 , we first concatenate h

(𝑓 )
𝐺𝑖

with h(𝑠)
𝐺𝑖

, and project it
into a group-space embedding z𝐺𝑖

. At the beginning of each epoch,
we perform k-means clustering over all group-space embeddings
and allocate prototype for each sample. Based on the prototypes

C = {c𝑖 }𝐾𝑖=1 defined as the average group-space embedding of each
cluster, the group-level contrastive loss can be calculated by:

L𝑔𝑟𝑜𝑢𝑝 = − 1
|B|

∑︁
𝐺𝑖 ∈B

log
𝑒sim(z𝐺𝑖

,c𝑗 )/𝜏 𝑗∑
𝑐𝑘 ∈C\𝑐 𝑗 𝑒

sim(z𝐺𝑖
,c𝑘 )/𝜏𝑘

, (7)

where 𝑐 𝑗 is the prototype corresponding to graph sample 𝐺𝑖 , 𝜏 𝑗
and 𝜏𝑘 are the concentration level-based temperatures [20] that
have positive correlation with the squared deviation of the 𝑗-th and
𝑘-th clusters, respectively. Intuitively, the cluster number 𝐾 should
be highly related to the class distribution of ID data. Although
this label information is unknown in unsupervised settings, we
empirically find that GOOD-D works well with a moderate 𝐾 value
owing to its low sensitivity to this hyper-parameter (see Sec. 5.5).

To learn the shared patterns at different levels simultaneously,
the hierarchical contrastive learning model is optimized by jointly
minimizing the above three loss functions:

L = L𝑛𝑜𝑑𝑒 + L𝑔𝑟𝑎𝑝ℎ + L𝑔𝑟𝑜𝑢𝑝 . (8)

4.3 Adaptive Training and OOD Scoring
Error-based OOD scoring. Through optimizing the loss function
(Eq. (8)), GOOD-D is able to capture the regularity information of
ID graph data at node, graph, and group levels. That is to say, given
an ID graph sample as input, the predicted error is expected to be
small, indicating the latent patterns of this sample highly match the
learned ones. Motivated by this, we calculate the OOD score based
on the predicted errors of testing samples. To be concrete, for an
input graph 𝐺𝑖 , the node-level OOD score 𝑠 (𝑛𝑜𝑑𝑒)

𝐺𝑖
and graph-level

OOD score 𝑠 (𝑔𝑟𝑎𝑝ℎ)
𝐺𝑖

are obtained by computing the node-level and
graph-level contrastive losses of this sample, respectively. In group-
level contrast, we do not perform the clustering algorithm on testing
data but allocate groups by selecting the closest prototype to its
group-space embedding. Then, the group-level OOD score 𝑠 (𝑔𝑟𝑜𝑢𝑝)

𝐺𝑖

is computed based on the similarity of prototype and group-space
embedding. In the simple version of GOOD-D, the OOD score is
the summation of the scores of three levels:

𝑠𝐺𝑖
= 𝑠

(𝑛𝑜𝑑𝑒)
𝐺𝑖

+ 𝑠 (𝑔𝑟𝑎𝑝ℎ)
𝐺𝑖

+ 𝑠 (𝑔𝑟𝑜𝑢𝑝)
𝐺𝑖

. (9)
Adaptive training and scoring. By adding the loss terms (via Eq.
(8)) at three levels, we can easily train an OOD detection model;
we can also obtain the OOD scores of the testing data based on
the predicted errors at different levels, as defined Eq. (9). However,
treating three terms equally would ignore the diverse sensitivities
at different levels, leading to sub-optimal performance. On the
one hand, different ID datasets may have their distinctive shared
patterns at different graph scale levels; on the other hand, it is not
trivial to manually tune the trade-off weights among three training
and testing terms, especially in unsupervised scenarios. To alleviate
this issue, we design an adaptive training and scoring mechanism
that automatically allocates the weights for loss and score terms.

Concretely, in training phase, we introduce the standard devia-
tions of predicted errors to balance the loss terms of different levels.
The adaptive loss function is computed by:

L = (𝜎𝑛𝑜𝑑𝑒 )𝛼L𝑛𝑜𝑑𝑒 + (𝜎𝑔𝑟𝑎𝑝ℎ)𝛼L𝑔𝑟𝑎𝑝ℎ + (𝜎𝑔𝑟𝑜𝑢𝑝 )𝛼L𝑔𝑟𝑜𝑢𝑝 , (10)
where 𝜎𝑛𝑜𝑑𝑒 , 𝜎𝑔𝑟𝑎𝑝ℎ and 𝜎𝑔𝑟𝑜𝑢𝑝 are the standard deviations of pre-
dicted errors of the corresponding levels, and 𝛼 ≥ 0 is a hyper-
parameter that controls the strength of self-adaptiveness. Our mo-
tivation is to punish the loss term with a larger deviation, thus our
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Table 1: OOD detection results in terms of AUC (in percent, mean ± std). The best and runner-up results are highlighted with
bold and underline, respectively.

ID dataset BZR PTC-MR AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol Avg.
RankOOD dataset COX2 MUTAG DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

PK-LOF 42.22±8.39 51.04±6.04 50.15±3.29 50.47±2.87 48.03±2.53 51.33±1.81 49.16±3.70 53.10±2.07 50.00±2.17 50.82±1.48 11.9
PK-OCSVM 42.55±8.26 49.71±6.58 50.17±3.30 50.46±2.78 48.07±2.41 51.33±1.81 48.82±3.29 53.05±2.10 50.06±2.19 51.00±1.33 11.8
PK-iF 51.46±1.62 54.29±4.33 51.10±1.43 51.67±2.69 50.67±2.47 49.87±0.82 52.28±1.87 51.47±1.33 50.81±1.10 50.85±3.51 10.1
WL-LOF 48.99±6.20 53.31±8.98 50.77±2.87 52.66±2.47 52.28±4.50 51.92±1.58 51.47±4.23 52.80±1.91 51.29±3.40 51.26±1.31 9.3
WL-OCSVM 49.16±4.51 53.31±7.57 50.98±2.71 51.77±2.21 51.38±2.39 51.08±1.46 50.38±3.81 52.85±2.00 50.77±3.69 50.97±1.65 10.0
WL-iF 50.24±2.49 51.43±2.02 50.10±0.44 51.17±2.01 51.07±2.25 50.25±0.96 52.60±2.38 50.78±0.75 50.41±2.17 50.61±1.96 11.3
InfoGraph-iF 63.17±9.74 51.43±5.19 93.10±1.35 60.00±1.83 58.73±1.96 56.28±0.81 56.92±1.69 53.68±2.90 48.51±1.87 54.16±5.14 7.4
InfoGraph-MD 86.14±6.77 50.79±8.49 69.02±11.67 55.25±3.51 81.38±1.14 59.97±2.06 58.05±5.46 70.49±4.63 48.12±5.72 77.57±1.69 6.5
GraphCL-iF 60.00±3.81 50.86±4.30 92.90±1.21 61.33±2.27 59.67±1.65 56.81±0.97 55.55±2.71 59.41±3.58 47.84±0.92 62.12±4.01 7.7
GraphCL-MD 83.64±6.00 73.03±2.38 93.75±2.13 52.87±6.11 79.09±2.73 58.30±1.52 60.31±5.24 75.72±1.54 51.58±3.64 78.73±1.40 4.3
OCGIN 76.66±4.17 80.38±6.84 86.01±6.59 57.65±2.96 67.93±3.86 46.09±1.66 59.60±4.78 61.21±8.12 49.13±4.13 54.04±5.50 6.9
GLocalKD 75.75±5.99 70.63±3.54 93.67±1.24 57.18±2.03 78.25±4.35 66.28±0.98 64.82±3.31 73.15±1.26 55.71±3.81 86.83±2.35 4.1
GOOD-D𝑠𝑖𝑚𝑝 93.00±3.20 78.43±2.67 98.91±0.41 61.89±2.51 79.71±1.19 65.30±1.27 70.48±2.75 81.56±1.97 66.13±2.98 91.39±0.46 2.2
GOOD-D 94.99±2.25 81.21±2.65 99.07±0.40 61.84±1.94 79.94±1.09 66.50±1.35 80.13±3.43 82.91±2.58 69.18±3.61 91.52±0.70 1.2

model can better concentrate on capturing the shared patterns at
the corresponding level.

In inference phase, to balance the scores of different levels, we
employ z-score normalization based on the mean values and stan-
dard deviations of the predicted errors of training samples:

𝑠𝐺𝑖
=
𝑠
(𝑛𝑜𝑑𝑒)
𝐺𝑖

− 𝜇𝑛𝑜𝑑𝑒
𝜎𝑛𝑜𝑑𝑒

+
𝑠
(𝑔𝑟𝑎𝑝ℎ)
𝐺𝑖

− 𝜇𝑔𝑟𝑎𝑝ℎ
𝜎𝑔𝑟𝑎𝑝ℎ

+
𝑠
(𝑔𝑟𝑜𝑢𝑝)
𝐺𝑖

− 𝜇𝑔𝑟𝑜𝑢𝑝
𝜎𝑔𝑟𝑜𝑢𝑝

,

(11)
where 𝜇𝑛𝑜𝑑𝑒 , 𝜇𝑔𝑟𝑎𝑝ℎ , and 𝜇𝑔𝑟𝑜𝑢𝑝 are the mean values of predicted
errors of training samples of the corresponding levels. The intu-
ition is to normalize the score of each level with ID data and thus
highlight the OOD samples with a larger bias. Notably, 𝜇 and 𝜎 can
be computed based on the losses in the last epoch, requiring no
additional computational complexity.

4.4 Complexity Analysis
We analyze the time complexity of each component in GOOD-
D. For data augmentation, the structural encoding can be calcu-
lated at once during pre-processing phase, and the computational
complexities of random walk encoding and degree encoding are
O(𝑁𝑛𝑚𝑑 (𝑟𝑤)𝑠 ) and O(𝑁𝑛) respectively, where 𝑁 is the number
of graphs, 𝑛 is the (average) number of nodes, and 𝑚 is the (av-
erage) number of edges. For GNN encoders, the complexity is
O(𝑁𝐿𝑚𝑑ℎ + 𝑁𝐿𝑛𝑑2

ℎ
+ 𝑁𝑛𝑑ℎ (𝑑𝑓 + 𝑑𝑠 )), where 𝑑ℎ , 𝑑𝑓 , and 𝑑𝑠 are

the dimension of interval embedding, raw feature, and structural
encoding, respectively. For three contrastive learning modules, the
complexity of each 𝐿′-layer projection network is O(𝑁𝐿′𝑛𝑑2𝑝 ),
where 𝑑𝑝 = 𝐿𝑑ℎ is the dimension of projected embedding. The
complexities of contrastive losses are O(𝑁𝑛2𝑑𝑝 ), O(𝑁𝑏𝑑𝑝 ) and
O(𝑁𝐾𝑑𝑝 ) respectively, where𝑏 is the batch size. The 𝐼 -iter k-means
clustering further brings O(𝐼𝐾𝑁𝑑𝑝 ) complexity. In the inference
phase, the OOD scoring has a computational cost similar to the
forward propagation in each training step. The adaptive mecha-
nism does not cost extra computation. Thus, after ignoring the
smaller terms, the overall complexity of each training epoch is
O(𝑁𝐿𝑑ℎ (𝑚 + 𝑛2 + 𝑏 + 𝐼𝐾 + 𝑛𝐿𝐿′𝑑ℎ) + 𝑁𝑛𝑑ℎ (𝑑𝑓 + 𝑑𝑠 )).

5 EXPERIMENTS
In this section, we empirically evaluate the effectiveness of the
proposed GOOD-D framework. In particular, the experiments are
unfolded by answering the following research questions:
• RQ1: How effective is GOOD-D on identifying OOD graphs?
• RQ2: Can we apply GOOD-D to anomaly detection tasks?
• RQ3:What are the contributions of contrastive learning at dif-
ferent levels in GOOD-D framework?

• RQ4: Is GOOD-D sensitive to the hyper-parameters?
• RQ5: What kind of embeddings in each space and OOD score
distribution are learned by GOOD-D?

5.1 Experimental Settings
5.1.1 Datasets. Previous studies on OOD detection mainly focus
on image or language datasets, while few investigate OOD detection
on graph datasets. In this paper, inspired by existing studies [36, 62],
we establish a benchmark for graph-level OOD detection by using
different pairs of graph datasets as ID and OOD data, respectively.
We select 10 pairs of datasets from two mainstream graph data
benchmarks (i.e., TU datasets [31] and OGB [17]), where datasets
in each pair belong to the same field and have moderate domain
shift. We select 8 pairs of molecule datasets, 1 pair of bioinformatics
datasets, and 1 pair of social network datasets. 90% of ID samples
are used for training, and 10% of ID samples and the same number of
OOD samples are integrated together for testing. We also conduct
experiments on anomaly detection settings, where 15 datasets from
TU benchmark [31] are used for evaluation. Following the setting
in [29], the samples in minority class or real anomalous class are
viewed as anomalies, while the rest are viewed as normal data.
Similar to [29, 57], only normal data are used for model training.

5.1.2 Baselines. We compare GOOD-D and GOOD-D𝑠𝑖𝑚𝑝 (i.e.,
GOOD-D without adaptive training and scoring) with baseline
approaches in the following three categories:
Graphkernel+detector.This type ofmethods first extracts vector-
ized representations by graph kernels [46], and uses OOD/anomaly
detectors to identify OOD samples based on representations. We
take Weisfeiler-Lehman kernel (WL) [38] and propagation kernel
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Table 2: Anomaly detection results in terms of AUC (in percent, mean ± std). The best and runner-up results are highlighted
with bold and underline, respectively.

Method PK-OCSVM PK-iF WL-OCSVM WL-iF InfoGraph-iF GraphCL-iF OCGIN GLocalKD GOOD-D𝑠𝑖𝑚𝑝 GOOD-D
PROTEINS-full 50.49±4.92 60.70±2.55 51.35±4.35 61.36±2.54 57.47±3.03 60.18±2.53 70.89±2.44 77.30±5.15 74.74±2.28 71.97±3.86
ENZYMES 53.67±2.66 51.30±2.01 55.24±2.66 51.60±3.81 53.80±4.50 53.60±4.88 58.75±5.98 61.39±8.81 61.23±4.58 63.90±3.69
AIDS 50.79±4.30 51.84±2.87 50.12±3.43 61.13±0.71 70.19±5.03 79.72±3.98 78.16±3.05 93.27±4.19 94.09±1.75 97.28±0.69
DHFR 47.91±3.76 52.11±3.96 50.24±3.13 50.29±2.77 52.68±3.21 51.10±2.35 49.23±3.05 56.71±3.57 62.71±3.38 62.67±3.11
BZR 46.85±5.31 55.32±6.18 50.56±5.87 52.46±3.30 63.31±8.52 60.24±5.37 65.91±1.47 69.42±7.78 74.48±4.91 75.16±5.15
COX2 50.27±7.91 50.05±2.06 49.86±7.43 50.27±0.34 53.36±8.86 52.01±3.17 53.58±5.05 59.37±12.67 60.46±12.34 62.65±8.14
DD 48.30±3.98 71.32±2.41 47.99±4.09 70.31±1.09 55.80±1.77 59.32±3.92 72.27±1.83 80.12±5.24 72.24±1.82 73.25±3.19
NCI1 49.90±1.18 50.58±1.38 50.63±1.22 50.74±1.70 50.10±0.87 49.88±0.53 71.98±1.21 68.48±2.39 59.56±1.62 61.12±2.21
IMDB-B 50.75±3.10 50.80±3.17 54.08±5.19 50.20±0.40 56.50±3.58 56.50±4.90 60.19±8.90 52.09±3.41 65.49±1.06 65.88±0.75
REDDIT-B 45.68±2.24 46.72±3.42 49.31±2.33 48.26±0.32 68.50±5.56 71.80±4.38 75.93±8.65 77.85±2.62 87.87±1.38 88.67±1.24
COLLAB 49.59±2.24 50.49±1.72 52.60±2.56 50.69±0.32 46.27±0.73 47.61±1.29 60.70±2.97 52.94±0.85 62.10±0.63 72.08±0.90
HSE 57.02±8.42 56.87±10.51 62.72±10.13 53.02±5.12 53.56±3.98 51.18±2.71 64.84±4.70 59.48±1.44 69.18±1.89 69.65±2.14
MMP 46.65±6.31 50.06±3.73 55.24±3.26 52.68±3.34 54.59±2.01 54.54±1.86 71.23±0.16 67.84±0.59 70.18±1.14 70.51±1.56
p53 46.74±4.88 50.69±2.02 54.59±4.46 50.85±2.16 52.66±1.95 53.29±2.32 58.50±0.37 64.20±0.81 66.48±0.56 62.99±1.55
PPAR-gamma 53.94±6.94 45.51±2.58 57.91±6.13 49.60±0.22 51.40±2.53 50.30±1.56 71.19±4.28 64.59±0.67 66.85±2.19 67.34±1.71
Avg. Rank 8.7 7.7 6.9 7.5 6.5 6.9 3.5 3.1 2.3 1.7

(PK) [32] as kernels, and take local outlier factor (LOF) [2], one-class
SVM (OCSVM) [30], and isolation forest (iF) [23] as detectors.
GCL+detector. This type of methods generates representations
with state-of-the-art GCL methods, and discriminates OOD samples
with detectors based on learned representations. We select two
graph-level GCL methods (i.e., InfoGraph [40] and GraphCL [52])
for representation learning. Apart from iF detector [23], we also
considerMahalanobis distance-based (MD) detectorwhich is proved
to be effective for detecting OOD data [37, 62].
End-to-end. We compare our method with two graph anomaly
detection methods which are trained in an end-to-end manner. The
first method is OCGIN [57], where a GIN encoder is optimized with
a SVDD objective. The second method is GLocalKD [29] which
identifies anomalies via knowledge distillation.

5.1.3 Evaluation and Implementation. We evaluate our method
using a popular OOD detection metric, i.e., area under receiver
operating characteristic Curve (AUC). Higher AUC values indi-
cate better detection performance. We conduct all experiments by
repeating 5 times and report the mean AUC and standard devia-
tion. We perform grid search to select the key hyper-parameters
of GOOD-D. For all baselines, we also use the optimal parame-
ter settings from the corresponding papers or obtained by grid
search. The code and more implementation details are avail-
able at https://github.com/yixinliu233/G-OOD-D.

5.2 Performance on OOD Detection (RQ1)
To answer RQ1, we compare our proposed methods with 12 com-
peting methods. The AUC results are reported in Table 1. From the
comparison results, we make the following observations. 1) GOOD-
D outperforms all baselines on 8 groups of datasets and achieves
runner-up performance on the rest of datasets. Meanwhile, our
proposed method has the best average rank across all compared
methods. These results demonstrate the effectiveness of GOOD-
D in detecting OOD samples from various graph-structured data.
2) Compared to methods except for GOOD-D, GOOD-D𝑠𝑖𝑚𝑝 also
achieves very competitive results, indicating an average rank of
2.2. The results illustrate that equally considering the contrastive
learning in three levels is also powerful in OOD detection. However,

adaptively adjusting their contributions usually leads to optimal
results. 3) The end-to-end methods (i.e., GOOD-D, OCGIN, and GLo-
calKD) generally perform better than the two-stage methods. Such
an observation illustrates the significance of consistent learning ob-
jectives with OOD detection tasks. 4) Among all two-stage methods,
GCL methods with Mahalanobis detector demonstrate impressive
results in OOD detection. The results show that this competitive
solution for OOD detection on vision/language data [37, 62], to
certain extents, is also useful for graph-structured data. 5) The
graph kernel-based methods, unfortunately, do not show a clear
advantage over random guessing (AUC= 50%). Their performance
is possibly limited by: a) they fail to capture feature information;
b) they only focus on patterns at the motif level; c) they generate
representations and conduct OOD detection separately.

5.3 Performance on Anomaly Detection (RQ2)
To investigate if GOOD-D can generalize to anomaly detection
setting [29, 57], we conduct anomaly detection experiments on 15
datasets following the benchmark in [29]. The results are illustrated
in Table 2. From the results, we find that our proposed methods
also perform well in anomaly detection settings. The main reason
is that GOOD-D captures common patterns in three different scale
levels, leading to its strong power in modeling normal data. In
contrast, the baseline methods only consider one or two scale levels,
resulting in sub-optimal performance. Similar to the observations in
Section 5.2, we can also find that the end-to-end methods generally
outperform the two-stage methods, and the kernel-based methods
tend to perform worse than other baselines. These observations
show the effectiveness of some key designs in our methods, i.e.,
end-to-end training and feature/structure views construction.

5.4 Ablation Study (RQ3)
Our methods consider hierarchical graph contrastive learning with
contrasts in three levels, i.e., node level, graph level, and group level.
To verify the effectiveness of each component, we conduct experi-
ments on all combinations of them. To eliminate the influence of
adaptive training and scoring mechanism, we perform the ablation
study on GOOD-D𝑠𝑖𝑚𝑝 that equally combines three components
via unweighted summation. The experimental results on our OOD

https://github.com/yixinliu233/G-OOD-D
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Table 3: Ablation study results of GOOD-D𝑠𝑖𝑚𝑝 and its variants in terms of AUC (in percent, mean ± std).

L𝑛𝑜𝑑𝑒 L𝑔𝑟𝑎𝑝ℎ L𝑔𝑟𝑜𝑢𝑝
BZR PTC-MR AIDS ENZYMES IMDB-M Tox21 FreeSolv BBBP ClinTox Esol
COX2 MUTAG DHFR PROTEIN IMDB-B SIDER ToxCast BACE LIPO MUV

✓ - - 83.51±4.14 72.48±3.77 96.84±0.58 60.85±2.95 79.34±1.81 62.58±0.67 59.48±2.20 69.53±2.29 53.29±4.32 86.49±1.20
- ✓ - 87.44±4.66 77.84±3.71 97.60±1.05 56.74±1.96 75.22±1.91 65.07±1.32 78.40±6.44 77.66±2.29 70.11±2.44 89.57±2.80
- - ✓ 79.21±5.60 74.83±8.54 89.47±1.85 50.43±7.41 72.91±2.75 54.84±2.56 58.16±6.23 58.09±5.43 58.46±5.35 83.35±2.71
✓ ✓ - 93.14±3.63 77.53±4.02 98.90±0.42 61.48±3.46 79.55±1.35 65.44±1.13 71.45±4.23 80.43±2.57 65.89±4.57 90.94±1.16
✓ - ✓ 85.01±3.05 76.10±3.01 96.87±0.52 59.69±1.89 79.69±1.67 63.01±0.97 56.30±5.33 69.66±2.45 54.14±4.01 86.31±1.99
- ✓ ✓ 86.59±5.24 77.97±4.00 97.22±1.35 55.51±4.39 76.17±1.65 65.48±0.78 77.38±5.19 79.77±4.39 70.20±1.01 88.33±1.35
✓ ✓ ✓ 93.00±3.20 78.43±2.67 98.91±0.41 61.89±2.51 79.71±1.19 65.30±1.27 70.48±2.75 81.56±1.97 66.13±2.98 91.39±0.46
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Figure 3: Parameter sensitivity of 𝐾 and 𝛼 .

detection benchmark are reported in Table 3, which brings the fol-
lowing observations. First, GOOD-D𝑠𝑖𝑚𝑝 that uses all components
(the last row) achieves the best results on 6 out of 10 datasets, and
has promising performance on the rest datasets. This observation
indicates the effectiveness of jointly executing contrastive learning
of multiple graph levels for OOD detection. Second, contrastive
learning at each level brings considerable contribution, while graph-
level contrast generally contributes more. This observation verifies
the effectiveness of each component. Third, compared to consid-
ering an individual component, combining the contrasts at two
levels usually improves the performance. The possible reason is
that contrasts at different levels would expose the OOD patterns
from different perspectives, leading to more comprehensive detec-
tion performance. Fourth, on some datasets, directly adding the
loss/score terms may lead to sub-optimal results, which illustrates
the significance of introducing an adaptive mechanism. Taking
dataset pair FreeSolv/ToxCast as an example, the performance of
GOOD-D𝑠𝑖𝑚𝑝 (70.48%) is lower than which of only using graph-
level contrast (78.40%); by considering the adaptive mechanism in
GOOD-D, the AUC can increase to 80.13%.

5.5 Parameter Study (RQ4)
Cluster number 𝐾 .We study the sensitivity of GOOD-D w.r.t. the
cluster number 𝐾 by varying 𝐾 as {2, 3, 5, 10, 15, 20, 30}. As shown
Fig. 3(a), the best selection of𝐾 for different dataset pairs is quiet dif-
ferent. For instance, PTC-MR/MUTAG needs fewer clusters (𝐾 = 2),
while a larger 𝐾 is preferred by ENZYMES/PROTEIN. We conjec-
ture that the best selection of𝐾 is highly related to the properties of
ID datasets, such as the number of categories. Fortunately, GOOD-
D is not very sensitive to this hyper-parameter, and a moderate
value (i.e., 𝐾 = 5, 10, 15) usually result in respectable performance.
Self-adaptiveness strength 𝛼 . To analyze the sensitivity of 𝛼 for
GOOD-D, we alter the value of 𝛼 from 0 to 1. The AUC w.r.t dif-
ferent selection of 𝛼 is plotted in Fig. 3(b). From the figure, we can
find that the AUC would drop slightly when 𝛼 = 0, illustrating
the significance of self-adaptive mechanism for loss function. In
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Figure 4: Visualization on AIDS/DHFR dataset pair. (a)-(e):
t-SNE visualization of testing sample embeddings (emb.) of
feature (feat.) or structure (str.) view at different embedding
spaces. (f): OOD scores of GOOD-D on testing samples.

general, the performance is relatively stable across different values
of 𝛼 , and the best results often occur when 𝛼 is between 0.2 and 0.8.

5.6 Visualization (RQ5)
To answer RQ5, we use t-SNE [43] to visualize the embeddings
learned by GOOD-D at different spaces. Fig. 4(a)-(e) show that the
ID samples and OOD samples are well separated in each embedding
space. We also visualize the distribution of OOD scores learned by
GOOD-D in Fig. 4(f). We can observe that the OOD samples tend to
have OOD scores that are greater than 7, while the ID samples are
given smaller scores (𝑠 < 4). Such a clear scoring boundary leads to
the superior OOD detection performance of GOOD-D.

6 CONCLUSION
In this paper, we make the first attempt toward detecting out-of-
distribution (OOD) samples from graph-structured data. To tackle
this problem, we propose a novel OOD detection method termed
GOOD-D, which learns the attributive and structural patterns from
training in-distribution (ID) by a carefully-crafted hierarchical graph
contrastive learning framework. In GOOD-D, the contrasts at node,
graph, and group levels are jointly conducted by maximizing the
mutual agreement between feature and structure graph view, and a
self-adaptive mechanism is designed to balance the trade-off among
the learning objectives and learned OOD scores at three levels. Ex-
tensive experiments demonstrate the superiority of GOOD-D over
the baseline methods in a series of real-world benchmarks.
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